

Mark Scheme (Results)

March 2013

GCSE Chemistry 5CH2F/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

March 2013
Publications Code UG035104
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	solution		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	precipitate		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i i) ~}$	filtered		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i v)}$	dried		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
1(b)(i)	A description including any two from - effervescence/fizzing/bubbles (1) - \{solid/zinc (carbonate)/it $\}$ \{becomes smaller/disappears\}(1) - \{solution/liquid\} remains colourless (1)	ignore cloudy/precipitate/misty/gets warm/ \{gas/carbon dioxide\} produced \{solid/zinc carbonate\} dissolves / a (clear) solution forms (1) colourless solution formed (2)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i i)}$	A description including	ignore test with lighted splint	(2)
	- limewater (1) becomes \{milky/cloudy/white (precipitate) $\}(1)$ second mark conditional on limewater	ignore any mention of how the carbon dioxide is produced eg blow through a straw	
if other substances added to limewater eg zinc carbonate maximum 1			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	neutron (1) electron (1)	neutrons electrons	(2)

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	A 3		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i)}$	D proton positive, electron negative		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i) ~}$	$\mathbf{1}$		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c) (i)}$	An explanation linking	both have one outer electron (2)	(2)
	- (both have) one electron (1)	both need to lose 1 electron to have a full outer shell (2)	
	in the outer do not award first mark if proton/neutron/atom (in outer shell)	(1)	fully correct diagrams of lithium and sodium showing electronic have the same number of electrons in the outer shell (1)

Question Number	Answer	Acceptable answers	Mark
2(c)(ii)	An explanation linking - lithium has 2 \{shells/orbits/energy levels\} (1) - sodium has 3 \{shells/orbits/energy levels\} (1) max 1 mark if \{outer/full\} shells max 1 mark if rings/circles/layers	If no marks awarded from 'answer' column, allow any one from sodium is more reactive than lithium ORA (1) sodium has more electrons than lithium ORA (1) sodium has more shells than lithium ORA (1) ignore reactivity increases down the group	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	zinc + hydrochloric acid \rightarrow zinc chloride + hydrogen ignore dilute if any additional reactants or products eg water (0) ignore formulae in addition to word equation, even if incorrect ignore state symbols, even if incorrect	= for \rightarrow do not allow 'and' for '+'	(1) correct formulae even if equation unbalanced mixture of correct formulae and words but, do not allow incorrect formulae, including h, H2

Question Number	Answer	Acceptable answers	Mark
3(b)	A description including three of the following:		(3)
	- remove/replace bung (1) put \{zinc and acid/reactants/chemicals\} in flask (1) start \{timing/stop watch/stop clock\} (1) \{measure/record\} (volume/amount) \{gas/hydrogen\} (1) every minute (1)	allow the solution for acid	
maximum 2 marks if zinc/hydrochloric acid in (gas) syringe	allow ‘see how much gas is produced' ignore any description of the apparatus as it is set up in the diagram eg connect the syringe to the bung/make sure the syringe is empty	ignore time until \{reaction is complete/a stated volume of gas is collected	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (i)}$	C collide		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (\text { ii) }}$	B cooling the hydrochloric acid		(1)

Question Number	Answer	Acceptable answers	Mark
3(d)	An explanation linking two of the following - \{(zinc) powder/it $\}$ has smaller \{particles/pieces/bits\} (1) - \{(zinc) powder/it $\}$ has a larger surface area (1) - (there are) more (frequent) collisions (between the particles/acid and zinc) (1) ORA	ignore more particles collisions are more likely/greater chance of collisions (1)	(2)

Question Number	Answer	Acceptable answers	Mark
3(e)	A description including two of the following	use hand (1) feel it getting hotter (1) - use thermometer (1) measure temperature \{before and after/change/during the reaction\} (1) temperature rises/gets hotter (1)	if no other mark awarded 'heat (energy) is given out' (1) maximum 1 mark if temperature falls/gets colder

Question Number	Answer	Acceptable answers	$\begin{array}{\|l\|l\|} \hline \text { Mar } \\ \mathrm{k} \\ \hline \end{array}$
4(a)	C 3.6 g		(1)
Question Number	Answer	Acceptable answers	$\begin{aligned} & \text { Mar } \\ & \text { k } \\ & \hline \end{aligned}$
4(b)	$3.6-3.2(1)(=0.4)$ correct working with no answer or wrong answer (1)	0.4	(1)
Question Number	Answer	Acceptable answers	$\begin{aligned} & \hline \text { Mar } \\ & \mathrm{k} \\ & \hline \end{aligned}$
4(c)	$\frac{3.6}{4(.0)}(1)$ their fraction $\times 100$ (1)	90 (\%) (2)	(2)
Question Number	Answer	Acceptable answers	$\begin{array}{\|l\|l\|} \hline \text { Mar } \\ \mathrm{k} \\ \hline \end{array}$
4(d)	$\underline{\mathbf{2} C u}(1)+\mathrm{O}_{2} \rightarrow \underline{\mathbf{2} C u O}(1)$		(2)
Question Number	Answer	Acceptable answers	Mar k
4(e)	relative formula mass $=64+16$ (1) $\frac{16}{\text { their relative formula mass }} \times 100(1)$	20(\%) without working (2) 80 seen in answer(1) allow $\frac{16}{64} \times 100(1)$ if no other mark	(2)
Question Number	Answer	Acceptable answers	Mar k
4(f)	An explanation linking - \{gains/takes\} electrons (1) - two (electrons) (1) maximum 1 mark if electrons lost	electrons shared/protons/neutrons (0) for this question	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	\mathbf{Y} and \mathbf{Z} both must be given with no additional substances		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (\text { ii) }}$	An explanation linking two of only one coloured substance in drink/ only one spot (at 4) in drink (1)	allow values ± 0.5 of those given here	(2)
	-this is not present in Y/ no spot at 4 in Y/ no corresponding spot in Y (1) the spots would rise to the same point if they were the same substance / the drink is X (1) - two coloured substances in Y/ Y has 2 spots (at 2.5 and 7) (1)	Y has more than 1 coloured substance/spot do not allow a specified drink does not have spot(s) corresponding to spot(s) in Y (1) number greater than 2	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i i)}$	(spot moved) 4 $\pm 0.5 ~ / ~ s o l v e n t ~$ (moved) 8(1) $R_{f}=4 / 8(2)(=0.5)$ consequential on their value for spot moved	$4 / 8$ OR 0.5 on its own (2)	(2)

Question Number		Indicative Content	Mark
QWC	* 5(b)	A description including some of the following points Preparing the paper - use of \{filter/chromatography/absorbent\} paper - pencil line (as start line) - put \{spots/dots/drop\} of colourings on (start) line - well apart / widely spaced - small spots - allow spots to dry - second spot to concentrate Setting up the chromatography tank - place \{solvent/water/named solvent/liquid\} in \{beaker/container\} - level below (start) line - \{place/hold/support\} paper in \{beaker/solvent/water/named solvent/liquid\} Producing the chromatogram - allow solvent to rise (towards top of paper)/wait for solvent to rise - wait for the colours to \{rise/separate\} - lift paper out of beaker before solvent reaches the top/mark solvent front - allow to dry give credit for correct points on a labelled diagram	(6)
Level	0	No rewardable content	
1	1-2	- a limited description e.g. put spots of colours on filter paper e.g. put paper in a beaker of water e.g. wait for the colours to separate - the answer communicates ideas using simple language and limited scientific terminology - spelling, punctuation and grammar are used with limited accur	S acy
2	3-4	- a simple description e.g. put spots of colours on filter paper and put into beaker containing solvent e.g. draw a pencil line on the paper, add the colours and ho beaker of solvent e.g. put dots of colours on filter paper and wait for the colours separate - the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriate - spelling, punctuation and grammar are used with some accu	it in a to arity acy
3	5-6	- a detailed description e.g. put spots on a pencil line on paper and put into beaker containing solvent so that spots not in solvent, wait a few min for the solvent to rise e.g. put small spots of colours on a piece of filter paper, put water in a beaker and hold the paper in the beaker until the separate - the answer communicates ideas clearly and coherently uses range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	utes me lours

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (c)}$	2 electrons to be drawn in, one between each hydrogen and oxygen atom in the overlap region or on the overlapping circles Ignore an inner shell on the oxygen if it has 2 electrons Do not award the mark if additional atoms or electrons added to the diagram	dots/crosses/circles/ e/e for electrons	(1)

Question Number	Answer	Acceptable answers	Mark
6(a)(i)	D noble gases		(1)
Question Number	Answer	Acceptable answers	Mark
6(a)(ii)	- correct plotting of all points (2) or correct plotting of two points (1) - suitable line dot to dot (1) consequential on their points	$\pm 1 / 2$ small square smooth curve / best fit straight line(1) if a bar chart is drawn, allow 1 mark if all bars are correct height	(3)
Question Number	Answer	Acceptable answers	Mark
6(a)(iii)	correct value read from candidate graph $\pm 1 / 2$ small square	if no line drawn on graph but at least two points plotted, allow value between 1.252.15 if no points on graph (0)	(1)

Question Number		Indicative Content	Mark
QWC	*6(b)	A description including some of the following points similarities both - float/on the surface - move around - effervesce / bubble / fizz - decrease in size / disappear / dissolve - produce hydrogen / H_{2} - produce (metal) hydroxide / LiOH and NaOH - produce alkaline solution / solution with pH greater than 7 / add named indicator to the solution and correct colour change give credit to correct products in equations differences sodium - more vigorous / more effervescence /moves faster (ignore reaction lasts longer) ORA for lithium - melts - forms ball / sphere - produces a flame / catches fire / sparks ignore any statements about atomic structures	(6)
Level	0	No rewardable content	
1	1-2	- a limited description e.g. both metals float e.g. both cause fizzing - the answer communicates ideas using simple language uses limited scientific terminology - spelling, punctuation and grammar are used with limit accuracy	
2	3-4	- a simple description e.g. both metals float, both metals fizz e.g. both metals fizz but sodium fizzes more - the answer communicates ideas showing some evidence clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	
3	5-6	- a detailed description including similarities and differen - e.g. both metals float and both produce hydrogen but fizzes more - e.g. both metals fizz but sodium is more reactive so it more and it melts - the answer communicates ideas clearly and coherently range of scientific terminology accurately - spelling, punctuation and grammar are used with few	ces odium izzes uses a rors

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG035104 March 2013

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

